CTP431- Music and Audio Computing Fundamentals of Sound and Digital Audio

Graduate School of Culture Technology KAIST Juhan Nam

Outlines

- What is Sound?
- Sound Properties
 - Loudness
 - Pitch
 - Timbre
- Digital Representation of Sound
 - Sampling
 - Quantization

What Is Sound?

- Vibration of air that you can hear
 - Compression and rarefaction of air pressure

Physical Sound

- Governed by "Newton's law" and "Wave" properties
- Sound production and propagation in musical instruments
 - 1. Drive force on a sound object
 - 2. Vibration by restoration force
 - 3. Propagation
 - 4. Reflection
 - 5. Superposition
 - 6. Standing Wave (modes): generate a tone
 - 7. Radiation from the object
 - 8. Propagation through air

Demos

http://www.acs.psu.edu/drussell/demos.html

https://www.youtube.com/watch?v=_X72on6CSL0

Psychological Sound

- Governed by ears (physiological sense) and brain (cognitive sense)
 - human auditory system
- Ears
 - A series of highly sensitive transducers
 - Transform sound into subband signals
- Brain
 - Segregate and organize the auditory stimulus
 - Recognize loudness, pitch and timbre

Auditory Transduction Video

http://www.youtube.com/watch?v=PeTriGTENoc

Sound Properties

Loudness

- Perceptual correlate of sound intensity
- Sound Pressure Level (SPL)
 - Objective measure of sound intensity
 - Log scale: $20 \log_{10}(P/P_0)$

 $P_0 = 20 \mu \text{Pa}$: threshold of human hearing

- Loudness is proportional to SPL but not exactly
- Equal-Loudness Curve
 - Most sensitive to 2-5KHz tones
 - Threshold of hearing

Equal-Loudness Curve (also called Fetcher-Munson Curve)

Pitch

- Perceptual correlate of fundamental frequency (F0)
- Pitch Scale
 - Human ears are sensitive to frequency changes in a log scale
 - Ex) Piano note scale
- Frequency Range of Hearing
 20 to 20kHz

Timbre

- Related to identifying a particular sound object
 - Musical instruments, human voices, ...
- Determined by multiple physical attributes
 - Time envelope (ADSR)
 - Spectral envelope
 - Changes of spectral envelope and fundamental frequency
 - Harmonicity: ratio between tonal and noise-like characteristics
 - The onset of a sound differing notably from the sustained vibration

Amplitude

Timbre

- Determined by multiple parameters
 - Perspective of sound synthesis

Source: http://www.matrixsynth.com/2011/05/kid-with-buchla.html

Microphones / Speakers

- Microphones
 - Air vibration to electrical signal
 - Dynamic / condenser microphones
 - The signal is very weak: use of pre-amp

Speakers

- Electrical signal to air vibration
- Generate some distortion (by diaphragm)
- Crossover networks: woofer / tweeter

Sampling

- Convert continuous-time signal to discrete-time signal by periodically picking up the instantaneous values
 - Represented as a sequence of numbers; pulse code modulation (PCM)
 - Sampling period (*T_s*): the amount of time between samples
 - Sampling rate $(f_s = 1/T_s)$

DIGITAL SIGNAL

Sampling Theorem

- What is an appropriate sampling rate?
 - Too high: increase data rate
 - Too low: become hard to reconstruct the original signal
- Sampling Theorem
 - In order for a band-limited signal to be reconstructed fully, the sampling rate must be greater than twice the maximum frequency in the signal

$$f_s > 2 \cdot f_m$$

– Half the sampling rate is called Nyquist frequency ($\frac{f_s}{2}$)

Sampling in Frequency Domain

- Sampling in time creates imaginary content of the original at every f_s frequency

• Why?

$$x_{1}(t) = A\sin(\omega_{1}t) = A\sin(2\pi f_{1}n / f_{s}) \int_{\omega} f_{2} = f_{1} \pm mf_{s}$$

$$x_{2}(t) = A\sin(\omega_{2}t) = A\sin(2\pi f_{2}n / f_{s}) = A\sin(2\pi (f_{1} \pm mf_{s})n / f_{s})$$

$$= A\sin(2\pi f_{1}n / f_{s} \pm 2\pi mn) = A\sin(2\pi f_{1}n / f_{s}) = x_{1}(t)$$

15

Aliasing

 If the sampling rate is less than twice the maximum frequency, the highfrequency content is folded over to lower frequency range

Aliasing in Frequency Domain

 The high-frequency content is folded over to lower frequency range from the replicated images

• A low-pass filter is applied before sampling to avoid the aliasing noise

Example of Aliasing

Example of Aliasing

- Aliasing in Video
 - <u>https://www.youtube.com/watch?v=QOqtdl2sJk0</u>
 - <u>https://www.youtube.com/watch?v=jHS9JGkEOmA</u>

(Note that video frame rate corresponds to the sampling rate)

Sampling Rates

- Determined by the bandwidth of signals or hearing limits
 - Consumer audio product: 44.1 kHz (CD)
 - Professional audio gears: 48/96/192 kHz
 - Speech communication: 8/16 kHz

Quantization

- Discretizing the amplitude of real-valued signals
 - Round the amplitude to the nearest discrete steps
 - The discrete steps are determined by the number of bit bits
 - Audio CD: 16 bits (-2¹⁵ ~ 2¹⁵-1) ← B bits (-2^{B-1} ~ 2^{B-1}-1)

Quantization Error

- Quantization causes noise
 - Average power of quantization noise: obtained from the probability density function (PDF) of the error P(q)

– Based on average power

$$20\log_{10}\frac{S_{\rm rms}}{N_{\rm rms}} = 20\log_{10}\frac{2^{B-1}/\sqrt{2}}{\sqrt{1/2}} = 6.02B + 1.76 \, \rm{dB} \qquad \text{(With 16bits, SNR = 98.08dB)}$$

- Based on the max levels

$$20 \log_{10} \frac{S_{\text{max}}}{N_{\text{max}}} = 20 \log_{10} \frac{2^{B-1}}{\frac{1}{2}} = 6.02B \, \text{dB}$$
 (With 16bits, SNR = 96.32 dB)

22